
THE ISODIAMETRIC PROBLEM AND OTHER
INEQUALITIES IN THE CONSTANT CURVATURE

2-SPACES
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Abstract. In this paper we prove several new inequalities for centrally
symmetric convex bodies in the 2-dimensional spaces of constant cur-
vature κ, which have their analog in the plane. Thus, when κ tends to
0, the classical planar inequalities will be obtained. For instance, we
get the relation between the perimeter and the diameter of a symmetric
convex body (Rosenthal-Szasz inequality) which, together with the well-
known spherical/hyperbolic isoperimetric inequality, allows to solve the
isodiametric problem. The analogs to other classical planar relations
are also proved.

1. Introduction

If K is a planar convex body, i.e., a compact convex set in R2, with area
A(K) and diameter D(K), the well-known isodiametric inequality states that

(1) πD(K)2 ≥ 4A(K),

with equality if and only if K is a circle. The isodiametric inequality can be
obtained as a consequence of the famous isoperimetric inequality,

(2) p(K)2 ≥ 4πA(K),

and the classical Rosenthal-Szasz’s theorem, namely,

(3) p(K) ≤ πD(K);

here p(K) denotes the perimeter of K. In (2) equality holds if and only if
K is a circle, whereas for (3) all constant width sets verify the equality.

For detailed information on these classical inequalities we refer to [3, § 10].
The isoperimetric problem has its analog on the sphere S2

κ and the hyper-
bolic plane H2

κ with curvature κ ≷ 0: Bernstein [2] (respectively, Schmidt
[13]) proved that if K is the region bounded by a convex curve on S2

κ (re-
spectively, H2

κ), then

(4) p(K)2 ≥ 4πA(K)− κA(K)2,
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with equality only for the geodesic discs (see also, e.g., [12, p. 324]). However,
just a few classical inequalities of the Euclidean plane have been translated
into the sphere and the hyperbolic space (for instance, Jung’s inequality, see
[4], or Bonnesen’s inequality, see [10]). For other problems in the hyperbolic
plane/space we refer, for instance, to [1, 5, 6, 7, 8].

The aim of this paper is to consider other classical inequalities of planar
convex bodies, looking for their analog on the constant curvature spaces
under symmetry assumptions. For instance, in the case of the sphere we get
the following spherical isodiametric inequality:

Theorem 1.1. Let K be a centrally symmetric convex body in S2
κ. Then

(5)
4π2

κ
sin2

(√
κ

D(K)
2

)
≥ 4πA(K)− κA(K)2,

and equality holds if and only if K is a geodesic disc.

As in the case of the classical (planar) isodiametric inequality, (5) will
be obtained as a direct consequence of the spherical isoperimetric inequality
(4) and an analog to Rosenthal-Szasz theorem (3) for the sphere; namely,
we prove the following result:

Theorem 1.2. Let K be a centrally symmetric convex body in S2
κ. Then

(6) p(K) ≤ 2π√
κ

sin
(√

κ
D(K)

2

)
.

and equality holds if and only if K is a geodesic disc.

At this point we observe that if K is not centrally symmetric, then in-
equality (6) is not true, as an octant of the sphere shows easily. We also
notice that in the two above results, when κ tends to 0 we obtain the classical
isodiametric inequality (1) and the Rosenthal-Szasz result (3), respectively.

Inequalities (5) and (6) provide upper bounds for the area and the perime-
ter of a centrally symmetric spherical convex body, respectively. We also
wonder, analogously to the planar case, whether they can be bounded from
below. We give a positive answer to this question, involving the minimal
width ω(K) of the convex body (see Section 4 for the definition).

Theorem 1.3. Let K be a centrally symmetric convex body in S2
κ. Then

p(K) ≥ 2π√
κ

sin
(√

κ
ω(K)

2

)
,

A(K) ≥ 2π

κ

[
1− cos

(√
κ

ω(K)
2

)]
.

(7)

Equality holds in both inequalities if and only if K is a geodesic disc.

Theorems 1.1 and 1.2 are proved in Section 3, as well as other new in-
equalities (e.g. a spherical Bonnesen-type isodiametric inequality for cen-
trally symmetric convex bodies, see Proposition 3.3). In Section 4 the results
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involving the minimal width, namely, Theorem 1.3 and other relations, are
obtained. First, Section 2 is devoted to introduce the notation, definitions
and some preliminary results which will be needed along the proofs.

In the case of the hyperbolic plane H2
κ, since the proofs of the correspond-

ing results are analogous to the ones in the sphere, for the sake of brevity
we just state the inequalities for H2

κ in an appendix at the end of the paper.

2. Notation for the case of the sphere and preliminaries

Let S2
κ be the 2-dimensional sphere of curvature κ > 0, i.e., with radius

1/
√

κ. A subset K ( S2
κ is said to be convex (in S2

κ) if it satisfies the
following two properties:

• K is contained in an open hemisphere;
• for any p, q ∈ K, there exists a unique (arc length parametrized)

geodesic segment, i.e., segment of great circle, joining p and q, which
is contained in K.

We observe that uniqueness comes from the assumption that K is contained
in an open hemisphere. From now on we will represent by γq

p the geodesic
starting at p and passing through q, and for the sake of brevity, we will write
γq

p to denote the (geodesic) segment of γq
p between p and q.

The set of all convex bodies, i.e., compact convex sets with non-empty
interior, in the sphere S2

κ will be denoted by K(S2
κ), and for K ∈ K(S2

κ), we
denote by A(K) and p(K) its area (Lebesgue measure) and perimeter (length
of the boundary curve), respectively. We notice that for any K ∈ K(S2

κ),
A(K) > 0. Finally, bdK and intK will represent the boundary and the
interior (in S2

κ) of K.
The intrinsic distance d : K×K −→ [

0,D(K)
]
is given by d(p, q) = L(γq

p),
i.e., the length of the geodesic segment γq

p.
As usual in the literature, for p ∈ S2

κ we represent the exponential map at
p by expp : TpS2

κ −→ S2
κ, and for any v ∈ TpS2

κ, we write γp,v(t) to denote the
geodesic passing through p with velocity vector v, i.e., γp,v(t) = expp(tv),
t ≥ 0. The geodesic disc centered at p and with radius r ≥ 0, namely,

D(p, r) = expp

({v ∈ TpS2
κ : |v| ≤ r}) ,

coincides with the closed ball Bd(p, r) in the intrinsic distance (see [9, Propo-
sition 7.2.6]). Its perimeter and area take the values (see, e.g., [14, p. 85])

p
(
D(p, r)

)
=

2π√
κ

sin
(√

κ r
)

and

A
(
D(p, r)

)
=

2π

κ

[
1− cos

(√
κ r

)]
.

(8)

Clearly, limκ→0 p
(
D(p, r)

)
= 2πr and limκ→0 A

(
D(p, r)

)
= πr2, i.e., the

perimeter and the area of a planar disc of radius r.
For K ∈ K(S2

κ), the diameter D(K) is defined as the maximum intrinsic
distance between two points of K, its circumradius R(K) is the greatest
lower bound of all radii R such that K is contained in a geodesic disc of
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radius R, and the inradius r(K) is the least upper bound of all radii r such
that K contains a geodesic disc of radius r.

2.1. On the monotonicity of the area and the perimeter. On the one
hand, it is a well-known fact that the Lebesgue measure in the sphere (indeed
any positive measure) is a monotonous functional, i.e., if K, L ∈ K(S2

κ) with
K ⊆ L, then A(K) ≤ A(L).

On the other hand, in [10, Proposition 1.3], the monotonicity of the
perimeter in K(S2

κ) was shown:

Lemma 2.1 ([10, Proposition 1.3]). Let K,L ∈ K(S2
κ) such that K ⊆ L.

Then p(K) ≤ p(L).

The proof of this fact is based on the so-called Principal Kinematic For-
mula for S2

κ (see e.g. [12, p. 321]). Next we provide a characterization of
the equality cases, which will be needed for the proofs of the equality cases
in the forthcoming results.

Lemma 2.2. Let K, L ∈ K(S2
κ), K ⊆ L.

i) If A(K) = A(L) then K = L.
ii) If p(K) = p(L) then K = L.

Proof. In order to prove i), we assume that K ( L. Then, on the one hand,
there exist p ∈ (intL) ∩ (L\K), and hence r > 0 small enough such that
D(p, r) ⊆ L\K. Indeed, if p ∈ L\K and p 6∈ intL, it would be p ∈ bdL;
then since K, L are compact and convex, the (spherical) convex hull (i.e., the
smallest convex body in the sphere containing the set) conv

({p} ∪K
) ⊆ L

and conv
({p} ∪K

)\K would contain interior points of L.
Therefore, by the monotonicity of the area,

A(L\K) ≥ A
(
D(p, r)

)
> 0.

On the other hand, since L = K∪̇(L\K), the additivity of the area functional
yields A(L) = A(K)+A(L\K), and using the assumption A(L) = A(K) we
get A(L\K) = 0, a contradiction.

Next we show ii). Without loss of generality, and for the sake of brevity,
we fix κ = 1, and we assume that p(K) = p(L) and K ( L. Then there
exists a point p ∈ (bd L)\K. Moreover, since K is compact, there exists
q ∈ bd K such that d(p, q) = min

{
d(p, r) : r ∈ bd K

}
. Let C = posK be

the positive hull in R3 of K and let H be the (unique) supporting plane in
R3 of C at q (see Figure 1). Denoting by H+ the half-space determined by
H and containing C, and taking Q = L ∩H+, it is clear that K ⊆ Q ( L.
Moreover, since H is a plane through the origin, Q ∩H = γq2

q1 is a geodesic
segment with, say, end points q1, q2. We observe, on the one hand, that
since L is convex, then q1, q2 cannot be antipodal points, and thus the curve
segment α in bd L joining q1 and q2 (and passing through p) is not a geodesic
segment (see Figure 1).
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Figure 1. The set Q and the curves joining q1, q2.

Therefore, L(γq2
q1) < L(α), because the intrinsic distance between two

points in the same open hemisphere is minimized by geodesic segments, and
since p /∈ H+, we finally get

(9) p(Q) < p(L).

On the other hand, by Lemma 2.1 we have that

(10) p(K) ≤ p(Q).

Then, (9) and (10), together with our hypothesis, lead to

p(K) ≤ p(Q) < p(L) = p(K),

which is a contradiction. ¤

2.2. Spherical centrally symmetric convex bodies. Next we consider
symmetric convex bodies in the sphere.

A spherical convex body K ∈ K(S2
κ) is said to be centrally symmetric, if

there exists a point cK ∈ K such that for all p ∈ bd K, d(cK , p) = d(cK , p∗),
where p∗ = γcK

p ∩ bd K, p∗ 6= p (see Figure 2).

Figure 2. A centrally symmetric convex body K in S2
κ with

center cK .

Next lemma shows that the point cK is unique, which we call the center
of K in S2

κ. The point p∗ is the symmetric point of p with respect to cK .

Lemma 2.3. Let K ∈ K(S2
κ) be centrally symmetric. Then the center cK

is unique.
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Proof. Let c1, c2 be two centers of K and for the sake of brevity we write
γ = γc2

c1 . Let {p, q} = γ ∩ bd K. Without loss of generality we may assume
that the points p, c1, c2, q are “ordered on γ” as shown in Figure 3, i.e., if
x = γ(tx), for x ∈ {p, q, c1, c2}, then tp < tc1 < tc2 < tq.

Figure 3. The center cK of a centrally symmetric convex
body K ∈ K(S2

κ) is unique.

On the one hand, since c1, c2 are centers of K, we have that

d(p, c1) = d(c1, q) = d(p, c2) = d(c2, q) =
d(p, q)

2
.

On the other hand, since c1, c2, q lie on the same (minimizing) geodesic, then

d(c1, q) = d(c1, c2) + d(c2, q),

and thus we get d(c1, c2) = 0. Therefore c1 = c2. ¤

We notice that if K = D(p, r) ∈ K(S2
κ) is a geodesic disc, then cK is just

the usual center p of K.

3. The spherical isodiametric inequality

We start this section showing Theorem 1.2, which establishes a Rosenthal-
Szasz-type inequality in S2

κ for centrally symmetric convex bodies. Then,
Theorem 1.1 will be a direct consequence of the spherical isoperimetric in-
equality (4) and (6).

Proof of Theorem 1.2. First we show that

(11) K ⊆ Bd

(
cK ,

D(K)
2

)
.

Indeed, let z ∈ K and we assume that d(z, cK) > D(K)/2. Then, denoting
by z∗ the symmetral of z with respect to cK (see Figure 4), we have that

d(z, z∗) = d(z, cK) + d(cK , z∗) >
D(K)

2
+

D(K)
2

= D(K),

which contradicts the fact that D(K) is the diameter of K. Thus d(z, cK) ≤
D(K)/2, i.e., z ∈ Bd

(
cK , D(K)/2

)
.
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Figure 4. If K is symmetric then K ⊆ Bd

(
cK , D(K)/2

)
.

Then, Lemma 2.1 together with (8) yields

p(K) ≤ p
(
Bd

(
cK , D(K)

2

))
=

2π√
κ

sin
(√

κ
D(K)

2

)
.

Finally, if p(K) = p
(
Bd

(
cK , D(K)/2

))
, since K ⊆ Bd

(
cK ,D(K)/2

)
, then

Lemma 2.2 ensures that K = Bd

(
cK , D(K)/2

)
is a geodesic disc. ¤

It is easy to check that when κ goes to 0 in (6), the classical inequality of
Rosenthal and Szasz (3) is obtained.

We observe that if K ∈ K(S2
κ) is centrally symmetric, then the relation

D(K) = 2R(K) holds. Indeed, from the inclusion (11) and the definition of
circumradius, we immediately get 2R(K) ≤ D(K). Moreover, for arbitrary
K ∈ K(S2

κ), there exists p0 ∈ S2
κ such that K ⊆ Bd

(
p0, R(K)

)
. Then, taking

p, q ∈ K ⊆ Bd

(
p0, R(K)

)
, we obtain d(p, q) ≤ d(p, p0) + d(p0, q) ≤ 2R(K),

and therefore, D(K) ≤ 2R(K).
We also notice that inequality (6) fails if the symmetry assumption is

removed, as an octant of S2
κ shows. In that case, the following proposition

provides a (not sharp) bound for the perimeter in terms of the diameter.

Proposition 3.1. Let K ∈ K(S2
κ). Then

p(K) ≤ 4π√
3κ

sin
(√

κ
D(K)

2

)
.

Proof. By definition of circumradius there holds K ⊆ D
(
p,R(K)

)
for some

p ∈ K, and hence, using the monotonicity of the perimeter (see Lemma 2.1)
and (8), we get

p(K) ≤ p
(
D

(
p,R(K)

))
=

2π√
κ

sin
(√

κR(K)
)
.

Finally, we use the spherical Jung inequality

D(K) ≥ 2√
κ

arcsin

(√
n + 1
2n

sin
(√

κ R(K)
)
)

,

for n = 2 (see [4, Theorem 2]) in order to bound the perimeter in terms of
the diameter. ¤
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In the case of arbitrary (not necessarily centrally symmetric) convex bod-
ies of the sphere, Proposition 3.1 and the spherical isoperimetric inequal-
ity (4) yield the following isodiametric relation for arbitrary convex bodies
K ∈ K(S2

κ):

Corollary 3.2. Let K ∈ K(S2
κ). Then

16π2

3κ
sin2

(√
κ

D(K)
2

)
≥ 4πA(K)− κA(K)2.

We notice that inequalities in Proposition 3.1 and Corollary 3.2 are not
sharp.

On the other hand, a series of inequalities of the form p(K)2−4πA(K) ≥
F (K) where proved by Bonnesen during the 1920’s, where F (K) is a geo-
metric non-negative functional, which vanishes only if K is a circle. Perhaps
the most famous Bonnesen inequality is provided by the (planar, classical)
circumradius and inradius:

(12) p(K)2 − 4πA(K) ≥ π2
(
R(K)− r(K)

)2
.

Thus, using (3), Bonnesen’s inequality (12) easily provides also a bound
for the isodiametric deficit πD(K)2 − 4A(K), namely,

(13) πD(K)2 − 4A(K) ≥ π
(
R(K)− r(K)

)2
,

which we call a Bonnesen-type isodiametric inequality. Here equality also
holds if and only if K is a circle.

In [10, Theorem 2.5], the following spherical Bonnesen (isoperimetric)
inequality has been proved: for K ∈ K(S2

κ) it holds

p(K)2 − (
4πA(K)− κA(K)2

)

≥ 1
4κ

[
sin

(√
κR(K)

)− sin
(√

κ r(K)
)]2(

2π − κA(K)
)2

.
(14)

Thus, using now Theorem 1.2, the spherical Bonnesen inequality (14) leads
to a Bonnesen-type isodiametric inequality for centrally symmetric convex
bodies in the sphere S2

κ:

Proposition 3.3. Let K ∈ K(S2
κ) be centrally symmetric. Then

4π2

κ
sin2

(√
κ

D(K)
2

)
−(

4πA(K)− κA(K)2
)

≥ 1
4κ

[
sin

(√
κR(K)

)− sin
(√

κ r(K)
)]2(

2π − κA(K)
)2

,

with equality if and only if K is a geodesic disc.

We notice that 2π−κA(K) > 0 for all K ∈ K(S2
κ) because K is contained

in an open hemisphere. Therefore, the spherical isodiametric inequality
(Theorem 1.1) can be also obtained as a direct consequence of the above
proposition.
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4. Relating the perimeter and the area to the minimal width
in the sphere

The width of a spherical convex body can be defined in the following way
(see e.g. [6]). Let K ∈ K(S2

κ) and let p ∈ bd K be a regular point, i.e., the
(unit) tangent vector v(p) to bdK at p is unique. Let n(p) ∈ TpS2

κ be the
inner normal unit vector to the curve bdK at p, i.e., let

n(p) =
p ∧ v(p)∣∣p ∧ v(p)

∣∣ =
√

κ
[
p ∧ v(p)

]
,

if it points to the interior of K, or
√

κ
[
v(p) ∧ p

]
on the contrary, and we

take the geodesic γp,n(p) (see Figure 5).

Figure 5. The width of a convex body K at p ∈ bdK.

Next we consider the family γt of geodesics which are orthogonal to γp,n(p)

at each point γp,n(p)(t), t ≥ 0. Then, there exists the smallest positive
number t0 > 0 such that the geodesic γt0 passing through the point γp,n(p)(t0)
is tangent to bdK, and clearly, γp,v(p) and γt0 are two ‘supporting’ geodesics
to bdK, orthogonal to γp,n(p), and such that K is contained in the strip
determined by them.

The width ω(K, p) of K at p ∈ bdK is then defined as the length of γp,n(p)

between the points p = γp,n(p)(0) and γp,n(p)(t0), i.e.,

ω(K, p) = d
(
p, γp,n(p)(t0)

)
= t0.

If p ∈ bdK is not regular, we do the same construction for all tangent
vectors v(p) to bdK at p, obtaining in this way a width-value ω

(
K, p, v(p)

)
for each vector v(p); then we define the width ω(K, p) of K at p ∈ bd K as
the minimum minv(p) ω

(
K, p, v(p)

)
.

Finally the minimal width of K is defined as

ω(K) = min
{
ω(K, p) : p ∈ bd K

}
.

We would like to point out the similarity of this notion with the classical
definition of minimal width of a planar (i.e., κ = 0) convex body (minimum
distance between two supporting lines to K).
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Next we show the relation between the perimeter/area and the minimal
width.

Proof of Theorem 1.3. First we show the inclusion

(15) Bd

(
cK ,

ω(K)
2

)
⊆ K.

We reason by contradiction assuming that there exists a point

z ∈ Bd

(
cK ,

ω(K)
2

)
\K.

Let z0 = bdK ∩ γcK
z and let p ∈ bdK be a boundary point of K such that

d(cK , p) attains the minimum (see Figure 6).

Figure 6. If K is symmetric then K ⊇ Bd

(
cK , ω(K)/2

)
.

Then (see, e.g., [11, p. 280, Corollary 26]) the geodesic γcK
p and the curve

bd K are orthogonal at p, and thus

ω(K, p) = d(p, p∗) = 2d(cK , p) ≤ 2d(cK , z0) < 2d(cK , z) ≤ ω(K),

a contradiction.
Therefore Bd

(
cK , ω(K)/2

) ⊆ K, and using the monotonicity of the area
and the perimeter (see Lemma 2.1), together with (8), we obtain that

A(K) ≥ A
(
Bd

(
cK , ω(K)

2

))
=

2π

κ

[
1− cos

(√
κ

ω(K)
2

)]
and

p(K) ≥ p
(
Bd

(
cK , ω(K)

2

))
=

2π√
κ

sin
(√

κ
ω(K)

2

)
.

Finally, if the equality p(K) = p
(
Bd

(
cK , ω(K)/2

))
holds, or analogously, if

A(K) = A
(
Bd

(
cK , ω(K)/2

))
, since K ⊇ Bd

(
cK , ω(K)/2

)
, then Lemma 2.2

ensures that K = Bd

(
cK , D(K)/2

)
is a geodesic disc. ¤

We notice that when κ tends to 0, the classical relation

p(K) ≥ πω(K)



THE ISODIAMETRIC PROBLEM AND OTHER INEQUALITIES IN H2
κ AND S2κ 11

of the plane is obtained (see e.g. [3, p. 84]). Moreover, the area inequality
in (7) yields

A(K) ≥ π

4
ω(K)2

if κ → 0, a known lower bound for the ratio A(K)/ω(K)2 for the case of
centrally symmetric sets (see e.g. [3, p. 83]).

We also observe that the expected relation ω(K) ≤ D(K) holds: indeed,
from (15) and the definition of inradius, we immediately get ω(K) ≤ 2r(K),
and thus

ω(K) ≤ 2r(K) ≤ 2R(K) = D(K).

5. Appendix: the hyperbolic case

Let H2
κ be the 2-dimensional hyperbolic space of curvature κ < 0, for

which we can consider, e.g., the Beltrami model. A subset K ( H2
κ is said

to be convex (in H2
κ) if for any p, q ∈ K, there exists a unique (arc length

parametrized) geodesic segment joining p and q, which is contained in K.
The set of all convex bodies in H2

κ will be denoted by K(H2
κ). The other

definitions are analogous to the ones in the sphere.
Now, the perimeter and the area of a geodesic disc in H2

κ take the values

p
(
D(p, r)

)
=

2π√−κ
sinh

(√−κ r
)

and

A
(
D(p, r)

)
=

2π

κ

[
1− cosh

(√−κ r
)]

.

The monotonicity of the perimeter and the area (Lemma 2.1, see [10, Propo-
sition 1.3]) with the equality cases (Lemma 2.2), as well as the uniqueness
of the center of symmetry (Lemma 2.3) also hold. Thus, analogous proofs
to the ones of the results in the sphere allow to show the following results:

Theorem 5.1 (Hyperbolic isodiametric inequality). Let K ∈ K(H2
κ) be

centrally symmetric. Then

−4π2

κ
sinh2

(√−κ
D(K)

2

)
≥ 4πA(K)− κA(K)2,

and equality holds if and only if K is a geodesic disc.

Theorem 5.2 (Hyperbolic Rosenthal-Szasz theorem). Let K ∈ K(H2
κ) be

centrally symmetric. Then

p(K) ≤ 2π√−κ
sinh

(√−κ
D(K)

2

)
.

and equality holds if and only if K is a geodesic disc.
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Theorem 5.3. Let K ∈ K(H2
κ) be centrally symmetric. Then

p(K) ≥ 2π√−κ
sinh

(√−κ
ω(K)

2

)
,

A(K) ≥ −2π

κ

[
cosh

(√−κ
ω(K)

2

)
− 1

]
.

Equality holds in both inequalities if and only if K is a geodesic disc.

Proposition 5.4. Let K ∈ K(H2
κ). Then

p(K) ≤ 4π√−3κ
sinh

(√−κ
D(K)

2

)
.

Corollary 5.5. Let K ∈ K(H2
κ). Then

−16π2

3κ
sinh2

(√−κ
D(K)

2

)
≥ 4πA(K)− κA(K)2.
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Kugeloberfläche und in der Ebene, Math. Ann. 60 (1) (1905), 117-136.

[3] T. Bonnesen and W. Fenchel, Theorie der konvexen Körper. Springer, Berlin, 1934,
1974. English translation: Theory of convex bodies. Edited by L. Boron, C. Christen-
son and B. Smith. BCS Associates, Moscow, ID, 1987.

[4] B. V. Dekster, The Jung theorem for spherical and hyperbolic spaces, Acta Math.
Hungar. 67 (4) (1995), 315–331.

[5] E. Gallego, A. Reventós, Asymptotic behavior of convex sets in the hyperbolic plane,
J. Differential Geom. 21 (1985), 63-72.

[6] E. Gallego, A. Reventós, G. Solanes, E. Teufel, Width of convex bodies in spaces of
constant curvature, Manuscripta Math. 126 (2008), 115–134.

[7] E. Gallego, G. Solanes, Perimeter, diameter and area of convex sets in the hyperbolic
plane, J. London Math. Soc. 64 (1) (2001), 161-178.

[8] E. Gallego, G. Solanes, Integral geometry and geometric inequalities in hyperbolic
space, Differential Geom. Appl. 22 (3) (2005), 315-325.

[9] M. A. Hernández Cifre, J. A. Pastor, Lectures on Differential Geometry (Spanish).
Publicaciones del CSIC, Textos Universitarios 47, Madrid, 2010.

[10] D. A. Klain, Bonnesen-type inequalities for surfaces of constant curvature, Adv. Appl.
Math. 39 (2) (2007), 143–154.

[11] B. O’neill, Semi-Riemannian Geometry. With Applications to Relativity. Pure and
Applied Mathematics, 103. Academic Press, Inc., New York, 1983.

[12] L. A. Santaló, Integral Geometry and Geometric Probability. Encyclopedia of Math-
ematics and its Applications, 1. Addison-Wesley Publishing Co., Reading, Mass.-
London-Amsterdam, 1976.
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